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Abstract

Purpose — The authors examine the relation between noise trading in equity markets and stochastic volatility
by estimating a two-factor jump diffusion model. Their analysis shows that contemporaneous price deviations
in the derivatives market are statistically significant in explaining movements in index futures prices and
option-market volatility measures.

Design/methodology/approach — To understand the impact noise may have in the S&P 500 derivatives
market, the authors first measure and evaluate the influence noise exerts on futures prices and then investigate
its influence on option volatility.

Findings — In the period from 1996 to 2003, this study finds significant changes in the volatility and mean
reversion in the noise level and a significant increase in its relation to implied volatility in option prices. The
results are consistent with a bubble in technology stocks that occurred with significant increases in noise trading.
Research limitations/implications — This study provides estimates for this model during the periods
preceding and during the technology bubble. The study analysis shows that the volatility and mean reversion
in the noise level are much stronger during the bubble period. Furthermore, the relation between noise trading
and implied volatility in the futures market was of a significantly larger magnitude during this period. The
study results support the importance of noise trading in market bubbles.

Practical implications — Bloomfield, O’'Hara and Saar (2009) find that noise traders lower bid-ask spreads
and improve liquidity through increases in trading volume and market depth. Such improved market
conditions could have positive effects on market quality, and this impact could be evidenced by lower implied
volatility when noise traders are more active. Indeed, the results in this study indicate that the level and
characteristics of noise trading are fundamentally different during the technology bubble, and this noise
trading activity has a larger impact during this period on implied volatility in the options market.
Originality/value — This paper uniquely analyzes derivatives on the S&P 500 Index in order to detect the
presence and influence of noise traders. The authors derive and implement a two-factor jump diffusion noise
model. In their model, noise rectifies the difference of analysts’ opinions, market information and beliefs among
traders. By incorporating a reduced-form temporal expression of heterogeneities among traders, the model is
rich enough to capture salient time-series characteristics of equity prices (i.e. stochastic volatility and jumps). A
singular feature of the authors’ model is that stochastic volatility represents the random movements in asset
prices that are attributed to nonmarket fundamentals.
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1. Introduction

This paper analyzes derivatives on the S&P 500 Index in order to detect the presence and
influence of noise traders. We derive and implement a two-factor jump diffusion noise model. In
our model, noise rectifies the difference of analysts’ opinions, market information and beliefs
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among traders. By incorporating a reduced-form temporal expression of heterogeneities among
traders, the model is rich enough to capture salient time-series characteristics of equity prices (i.e.
stochastic volatility and jumps). A singular feature of our model is that stochastic volatility
represents the random movements in asset prices that are attributed to nonmarket fundamentals.

We assume that the market is composed of both rational and boundedly rational
investors, who trade in equity markets. Efficient markets theory does not preclude the
existence of boundedly rational agents, rather, it conjectures that a sufficiently large number
of well-informed and well-financed investors (arbitrageurs) guarantees that any potential
mispricing induced by noise traders will be corrected (Samuelson, 1965 and Fama, 1965).
Despite the conviction of these researchers regarding the efficient market hypothesis,
research suggests that, at times, arbitrageurs are unable or unwilling to remove noise traders
from the market (Black, 1986; Barber et al, 2009; Brunnermeier and Nagel, 2004). That is,
some investors may interpret non-news price shocks as news itself and enact trading
strategies on these non-news events (Roll, 1988). As such, investors face the inherent problem
of determining what is “fundamental.” (DeLong ef al. 1990a, b).

Hence, the presence of noise traders can create externalities for investors by exposing
them to additional risks that they fail to identify. A typical investor believes that asset prices
should reflect their intrinsic value in a long-run equilibrium with short-term random shocks
occurring due to fundamental information flow. Fundamentals, however, may not prevent
anomalous price movements from occurring if differences in opinions among investors exist.
That is, some investors may interpret non-news price shocks as news itself and enact trading
strategies on these non-news events (Roll, 1988). As such, investors face the inherent problem
of determining what is “fundamental.”

In equilibrium, the price of any asset should equal the discounted expected cash flow and
reflect a reasonable rate of return associated with its fundamentals. Clearly defining market
fundamentals for equity has proven difficult. Standard discounted cash flow models require a
discount rate estimate. This is further complicated by the fact that no definitive time horizon
exists. Derivative securities, on the other hand, circumvent these issues. Recent advances in
modern asset-pricing theory allow us to price a wide array of contingent claims, given a
continuous-time model for the dynamics of the underlying state variables. The use of such
models is born from a need to describe a range of economic states. Of particular interest
trading patterns in equity markets can cause return distributions for these securities to be
negatively skewed with higher kurtosis than allowable in a traditional lognormal model. The
significant advantage of using the derivative market is that a clear distinction can be made
between market fundamentals and noise.

In the next section, we review the option pricing literature. Section 3 develops the pricing
model used to examine noise trading activity before and during the technology bubble in the
late 1990s. Next we describe the data used in our analysis. Section 5 discusses the empirical
results on implied volatility and noise trading. In the final section we summarize how noise
trading and implied volatility changed during the tech bubble.

2. Literature review

Since the seminal work on option pricing by Black and Scholes (1972, 1973) and Merton (1973),
many papers have provided insights on which of the basic assumptions lead to the greatest
pricing inaccuracies. One issue with model accuracy is the “volatility smile.” Specifically, the
volatility implied by the option prices is dependent upon time to maturity and the extent to which
an option is in the money, that is, “moneyness.” Although Hull and White (1987), and later Heston
(1993), provide a tractable stochastic volatility model, many studies show that stochastic
volatility alone proves insufficient to account for the implied-pricing distributions found in the
option data. In fact, numerous studies note that the volatility smile continues to persist, and thus,
it appears that stochastic volatility models alone cannot correct for the volatility smile.



Bates (1988) first looks at the issues of using stochastic volatility without the potential for
jumps and suggests that jumps are also needed. Pricing errors are associated with the
assumptions of a lognormal distribution of stock prices and continuous returns. Furthermore,
the empirical research typically supports including price jumps in option pricing models. For
instance, Shiekh and Ronn (1994) analyze the patterns in option returns and find that not all
patterns in adjusted volatility can be accounted for by stochastic volatility. Jackwerth and
Rubinstein (1996) show the critical errors that result from a lognormal assumption and show
how to uncover more dependable probability distributions from option prices. Bakshi et al
(1997) perform an exhaustive study looking at several variations of the Black—Scholes model.
Furthermore, Bakshi et al. (1997) find empirical support for the stochastic volatility model, but
they show that jumps are critical near an option’s expiration. Duffie ef @/ (2000) show that
models including a jump are superior to those with only stochastic volatility. Jackwerth (2000)
gives a more detailed review of the literature on implied distributions of option prices and
lends additional support to the notion that jumps matter. In a more comprehensive study,
Jones (2000) thoroughly disclaims the single-parameter models by showing that volatility
alone cannot adjust to compensate for the volatility smile.

In the pricing of options on futures, Ramaswamy and Sundaresan (1985) show notable
estimation improvement with stochastic interest rates. Miltersen and Schwartz (1998)
emphasize the importance of both stochastic interest rates and stochastic convenience yields.
Hilliard and Reis (1998) further illustrate that extension of the model to include jumps in spot
prices is important when valuing the options on commodity futures.

Lo and Wang (1995) forward a model with mean reversion and illustrate its importance in
option pricing models. Schwartz and Smith (2000) develop a two-factor model (without jumps)
that allows for mean reversion and uncertainty in equilibrium price level. They show that this
model is equivalent to the stochastic convenience yield model. Lucia and Schwartz (2002),
Escribano et al (2002) and Deng (2001) examine the importance of the regular patterns (in the
behavior of electricity prices) and detail its implications for the purposes of derivative pricing.
Chacko and Das (2002) connect the relationship between affine stochastic processes and
bond-pricing equations in exponential-term structure models. They forward numerous
options that can use this method.

Considerable empirical evidence suggests that the majority of all financial assets, such as
equities or equity indexes, currencies or interest rates, do not follow a lognormal random
walk. One of the most prominent characteristics of the financial markets is that from time to
time there is an abrupt, yet very significant, unpredicted change in an asset’s price. These
sudden moves occur far more frequently than would be predicted with the assumption of a
lognormal distribution. Hence, it is likely that jump and bubble risk are priced.

3. Developing the pricing model

Empirical evidence illustrates that random movements in asset prices are attributed to
fundamental information flow and noise. Moreover, current option research shows that
stochastic volatility and jumps are necessary additions to the traditional Black—Scholes
method to accurately describe the price dynamics of equity, that is, Hull and White (1987);
Scott (1987); Heston (1993); Merton (1976); Bates (1991, 1996); Bakshi et @l (1997); Bakshi and
Chen (1997) and Duffie et al. (2000). To model equity index prices, we assume the underlying
price process for an equity index and its components are given by the following stochastic
structure:

o= (r=s+b(t) = 7)) )dt + 0.dZ (1) + ] dq’ (1), o
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db(t) = —xb(t)dt + 0,dZy (b), @

where 7 is the instantaneous riskless rate of return, 4 is the frequency of jumps per year, &
represents the dividend yield, o, represents the variation coefficient for the stock process, b(f)
represents the presence of noise (or stochastic volatility) in the price of the market index, Z ()
and Z,(¢) are standard Brownian motions, and Cov; [dZ, (), dZ, (t)] = pgdt, " =Y —1is
the risk-adjusted percentage jump conditional upon a Poisson distributed event occurring
that is log-normally, identically and independently distributed over time with unconditional
mean /4}. The standard deviation of In(1+]) is w, & , o, are respectively the speed of
adjustment and variation coefficients for the noise diffusion b(f), ¢*(¢) is an independent
Poisson jump counter with intensity A, thatis, Pr(dg” = 1) = 1"dt,q(¢) and J are uncorrelated
with each other and with Z;(¢) and Z,(¢).

The resulting sample path for equity prices stated in equation (1) will be continuous most of
the time with finite jumps occurring at random times. Moreover, the stock return distribution in
(1) is consistent with Bakshi ef al (1997) and offers a sufficiently versatile structure that
accommodates the desired characteristics. That is, skewness in the return distribution is
controlled by the correlation, p, or the mean jump, ,u}, whereas the amount of kurtosis is regulated
by either the volatility parameter, o3, or the magnitude and variability of the jump component.

3.1 Futures valuation
If equation (1) conforms to some regularity conditions, then the random variable ratio of the
index’s price at time 7 to the index’s price at time ¢ can be written formally as

%:exp ((Vféaf 75) fz*ﬂj)w /T b(v)dv + o, /T a0 S B

where Y () = 1if n = 0; Y'(n) = []_, Y} for n> 1. The Y are independently and identically
distributed and » is Poisson distributed with parameter 'z, where 7 = T —¢ If V; is

log-normally distributed with mean (y - %112> and a variance of 7 then the solution for the

futures price according to the Feynman—Kac theorem is determined as follows: [1]

F(S(t),b(t), 7) = S(H)A(z)el N0 “)
where
(Hy(7) — 1) KAop — % PpsOsObK 2
A(T) = exp ( ; 2 b ) _ agHb (T)
K 4k
1—e™*
Hb(T) = X .

The futures valuation model in Eqn (4) has several distinct features. First, it shows that the
futures price depends on the current level of the index price, the current level of noise, the time
to maturity, the parameters of the joint process and the price of a risk-free, zero-coupon bond
with the same corresponding maturity. Moreover, (4) specifies an exact relation between the
futures price and both market fundamentals and the level of noise in the equity market. In
particular, we note that in the absence of noise (6, = 0)[2], (4) reduces to the traditional cost-



of-carry model. This illustrates that in equilibrium index futures are indeed priced according
to their fundamentals. Furthermore, we find that as maturity diminishes, the impact of noise
on futures prices is decreasing. This is expected since the futures price must converge to the
spot price at expiry. Lastly, when the intensity of the noise to revert to the mean increases, its
influence on futures diminishes.

The closed-form formula in Eqn (4) makes it possible to measure the amount of volatility
present in the market. The logarithm of the futures price is linear with respect to the spot price
and noise. The level of noise is latent, but its relation to the futures price is known. Using the
Kalman filter, point estimates for the amount of noise present in equity prices can be obtained
using the pricing relation in Eqn (4). Once the estimates are obtained, they may be used to test
their significance to explain futures prices.

3.2 Option valuation
To price an option contract standard practice begins with specifying a stochastic structure
governing the underlying state variables. Uniquely, options written on index futures are not
written directly on the index and therefore are not directly influenced by the index’s
stochastic structure. The value of these securities is only influenced through the price
movements of the futures contracts. Therefore, to price the futures options, the stochastic
composition of the futures contract must be developed endogenously from the underlying
system of state variables that impact the value of the futures contract.

The futures price is a function of the spot price, convenience yield and time. Using Ito’s
lemma, and the dynamics in equations (1) and (2), the stochastic increments for the futures
contract are shown to be

1 1 -
dF(t) = {éFssggsz + i+ F. (7 54 b(t) -2 ﬂ]) S — Fyxb(t) + Fypy0.01 + F,

+A'E"[F(SY, t) — F(S, t)] }dt + F0,SdZ, (t) + FyoydZ, (1) + F(SY, t)
—F(S, t) = VE'[F(SY, t) — F(S, t)|dt. 6)

The drift coefficient in equation (5) is equal to the equilibrium condition for the valuation
model in equation (4), thereby reducing (5) to

dF(t) = F,0,Sd7" (t) + FyoudZ; (t) + F(SY, ) — F(S, t) — X'E[F(SY, t) — F(S, t))dt.
©)

As expected, continuous movements in the futures price are attributed to the diffusions for
the spot price and noise processes, while discrete movements occur due to random jumps in
the spot market. A unique feature of the futures diffusion is that jumps are introduced as a
function of the futures price, which differs from previous research (see Hilliard and Reis
(1998)). Previous research shows that jumps from the spot market are identical to jumps in the
futures contract indicating a one-to-one relation. Our model shows that jumps in the spot
market do impact the dynamics of the futures price but not necessarily in the same manner.
Moreover, jumps across contracts could differ, which could explain pricing differences in
option contracts written on these contracts.

3.3 Taking the partial derivatives

Fs _ A(T)@<V_5)T+Hb(1)b(t).
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Fy = Hy(:)F(SY, b, 7).

and substituting them into Eqn (6) yields

dF t * * ok * * *
W(t)) = =1 ppdt + 0,dZ_ () + H,(1)0,dZ, (t) + Jrdqy. @)
Defining the diffusion for the futures to be
opdZy(t) = 0,dZ, (t) + Hy(t)0dZ, (1), ®)
the futures price stochastic differential becomes
dF t * * * * *
W(f)) = = ppdt + 6pdZy(t) + Jeday. ©)

The stochastic differential in expression (9) is for an equity index futures contract, wherein
the value derives from a jump-diffusion spot price and a mean-reverting noise process. This
expression is determined endogenously from the dynamics of the state variables, which are
given exogenously. In addition, the diffusion is independent of the level of both state
variables. Therefore, for the purpose of pricing options written on the underlying futures
contract, the futures price dynamic can be used as an exogenous process.

The solution for the two-factor options price is given as

o it (ﬂ*’[l)n

—r7) e ok
C(FY,t)=e ZO: ] [max[F(T) — X, 0]], (10)
©_ 4T (/1*1'1)”
C(FY,t)=¢"m ZT[F(z‘)egW“N(dl) — XN(d»)], 11
n=0 :
where gn) = (—/l*u; + %),

=V !/Tl aFdZ*(s)} ,

t

ln(Q) + ((—/1*;4; + ”’—F) o410+ nwz))
dl = - 9
V2 4 nw?

and
dy = dy — /12 +7’l(1)2,

The solution for the option contract is consistent with those presented by Merton (1976) and
Bates (1991, 1996).

4. Data

Our analysis uses weekly observations for spot, futures and option prices for the S&P 500
Index. To estimate our model, we use the three closest to maturity futures contracts on the
S&P 500 Index. End-of-day futures prices are obtained from Price-data.com for the period


http://Price-data.com

from May 1982 to May 2003. When a contract is within five days of its expiration, we use the
price of the subsequent futures contract and continue until this contract is five days from its
expiration. In addition, data for the three-month T-bill is obtained from the Federal Reserve’s
H.15 Statistical Release and data used for the S&P 500 Index dividend yield are taken from
Datastream.

Options data for this study is obtained from the Chicago Mercantile Exchange (CME) over
the period from January 1983 to May 2003. This data is similar to the quotes capture report
used in Bates (1991). However, our focus is over a longer period of time and does not include
an analysis of intraday effects. We use daily settlement prices for S&P 500 futures options.
Price Files are produced in the late afternoon of each business day after all CME markets are
closed. The options are on a cash settled with the underlying contract being $500 times the
S&P 500 Index level. Contracts are available on five-point intervals above and below the
current index level. Thus, as with other option contracts, the range of strike prices is
determined by past price movements of the underlying asset.

In this study we use three filters on the data. First we study contracts with a single
maturity; only contracts with 1-4 months are considered. This avoids thin trading and
expiration effects. Next, we require that all contracts have 20 trades in calls and 20 trades in
puts. Again this restriction is to avoid thin trading. Finally, we restrict analysis to contracts
that have at least four different strike ranges for calls and puts. This restriction insures a
reasonable moneyness range to study.

5. Empirical analysis

To understand the impact noise may have in the S&P 500 derivatives market, we first
measure and evaluate the influence noise exerts on futures prices and then investigate its
influence on option volatility.

5.1 Futures

Equation (4) illustrates the hypothesized relation between the S&P 500 Index, noise and
futures written on the Index. A unique element of this relation is that the noise process is
latent. Therefore, to econometrically evaluate our model, we employ dynamic factor analysis
to document the time-series behavior of noise and to test its statistical significance for pricing
index futures.

An instrument capable of handling a wide variety of time-series models, including latent
variable estimation, is the state-space model (see Watson and Engle, 1983). The general state-
space form applies to a multivariate time series of observable variables. In this case, futures
prices for different maturities are related to an unobservable state vector, and a mean-
reverting stochastic noise process is included via a measurement equation. The elements of
the noise process are determined by the state or transition equation, which in our model is the
discrete time version of (2). To configure the state-space structure for our futures market
model, let b(f) be an 7 X1 vector of unobserved variables called noise, and x(¢) and y(f) be m x1
and gx1 vectors of observable variables called input and output variables, respectively. The
state-space model can be written as:

b(t+1) = Gb(t) + &(t + 1), (12a)

y(t) =C+ Dx(t) + Mb(t) + (1), (12Db)

where £(t) and £ () are, respectively, nx1 and gx1 vectors of disturbances with G, C, D and M
as constant real vectors of conformable dimensions. More formally
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y(t)=MWF(S(), )] i=1,....q,
(1) = [(r — 6), nS(1)], G = [1 — kA,
C = [nA(z)], D = [z, 1],
M = [Hy(7)],

We assume that the disturbance terms, () and ¢(2), are each serially uncorrelated and are
also uncorrelated with each other and that

E(£() =0, E(C@?)) =0,

E(&()E (1)) = o*At, E(S(H)C (1)) =R

Given the structure of the state space, the Kalman filter may be used to generate conditional
forecasts of the noise process[3]. This recursive procedure produces optimal estimators of the
noise at time ¢, given information up to time ¢, and it enables the estimate of this latent process
to be continuously updated as new information becomes available. Operationally, the best
linear estimate of the noise process, b(|t), is obtained through the following equations:

b(t+1|t) = Gb(t|t), (13a)
P(t+1|t) = GP(t|t)G + V, (13b)
Ct+1t) =y(t+1) — Gb(t + 1) — Dx(t + 1), (13c)
K(t+1) = P(t + |G [GP(t + 1|)G +R] ™, (13d)
b+ 1t +1) =b(t+ 1)) + K(t + 1)C(t + 1]1), (13e)
P(t+1jt+1) = [[ — K(t+1)GIP(t + 1|1), (13f)

where

P(t+1]t) EE[(b(t+ 1) —b(t+ 1|t)) (b(t+ 1) bt + 1|t)),],
and

P(t+ 1]t +1) EE{(Z)(Z‘ +1) = b(t+ 1)t + 1)) (b(t +1) = b(t+ 1)t + 1))/},

are the error covariance matrices, and 1<t <7T.

Lastly, the Kalman filter treats the model’s parameters as known. In practice, however, the
parameter matrices C, D, G, M, 6>At and R are unknown and need to be estimated. To begin
estimating the parameters, initial guesses are presumed and used to produce first-generation
forecasts of the state vector’s time series. Once the noise estimates have been computed, the
data are used to maximize a log likelihood function to acquire the parameters for the model.
These estimated parameters may then be recycled in the Kalman filter to reproduce updated



estimates of the state vector, which leads to parameter estimates that ultimately produce the
greatest likelihood value. After this iterative procedure converges, final parameter and noise
estimates are obtained, and their significance is statistically tested.

Iterating between the maximum likelihood step to estimate the parameters of (12) and the
Kalman step to generate the unobservable level of noise, dynamic factor analysis concludes
that both the spot price and noise process are statistically significant in determining futures
prices. More specifically, Table 1 reports the statistical importance of noise in the
determination of the S&P 500 futures prices. For our analysis, we estimate our model over
four different time periods using the spot and futures prices. Column 1 reports the results for
our model over the entire sample period, which is from 1982 to 2003. This period starts when
the CME introduced trading in S&P 500 futures contracts in 1982. Our sample period ends in
2003 with the conclusion of the bear market in stocks after the technology bubble.

Column 2 reports results for our model using data from 1988 to 2003. We choose this
period for analysis as it is subsequent to two events that might influence our findings. First,
Merrick (1988) identifies pricing anomalies that existed with the S&P 500 futures contract
from 1982 to 1985, when the efficiency of arbitrage in the Index improved. Second, the stock
market crash of 1987 resulted in significant volatility in the stock market. Lastly, columns 3
and 4 report results for the time periods before and during the hypothesized technology
bubble [4]. That is, we estimate our model from 1988 to 1996 and from 1996 to 2003.

In all cases, the speed of adjustment coefficient (&), the diffusion coefficient (a) and the
market price of risk (1) are all statistically significant at the 0.01 level. Comparing the results
for the first three columns, we find there is little difference between the coefficients for the
noise process. The main difference between the first estimation period and the second
estimation period is that the former has a moderately higher tendency of mean reversion.
This result may be caused by pricing anomalies that existed with the S&P 500 futures
contract from 1982 to 1985 as documented by Merrick (1988) [5]. Lastly, we note that the
volatility for the noise process is small and the market price of risk is close to zero.

Comparing our results for the bubble period relative to the pre-bubble period, we find that
the volatility and mean reversion in the noise level are much stronger during the bubble
period. The estimated coefficient for the speed of adjustment () is 1131.6 during the tech
bubble. This is twice as large as the coefficients for the entire sample period (578.4) and pre-
tech bubble (426.6). Furthermore, the estimated coefficient for the variation of the noise
diffusion (b(?)) is 1145.9, which is significantly larger than for other estimation periods and 2.6
times larger than the coefficient for the pre-tech bubble period.

Estimation periods
Entire sample Post-1987 crash Pre-tech bubble Tech bubble
Model estimates 04/1982-05/2003 01/1988-05/2003 01/1988-12/1996 12/1996-05/2003

K 5784  (4034) 7203 (3841) 4266 (1188 11316  (209.3)
on 5853 (4094) 7288  (3906) 4310 (1198 11459  (217.3)
pGs 5003  (4139) 7350  (3954) 4341  (1206) 11563 (2232
2 0112 (0164 0098  (0.160) 0131  (0.125) 0056  (0.198)
el 0058  (0023) 0050  (0.019) 0056  (0.018) 0041  (0.016)
& 0029  (0012) 0024 (0009 0030 (0005 0015  (0.003)

Note(s): This table shows estimation results for the two-factor model using the Kalman filter. The data used in
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the estimation are the weekly spot level of the S&P 500 Index, the second and third closest to expiration futures  Estimation of the two-

contracts on the S&P 500 Index, the three-month 7-bill rate and the dividend yield of the S&P 500 Index.
Standard errors are shown in parentheses

factor model for the
S&P 500 Index




These findings are consistent with observations of other researchers who suggest a bubble
existed during this time period. In particular, Brunnermeier and Nagel (2004) find that hedge
funds were holding a disproportionately high level of technology stocks during this time.
These portfolio holdings peeked six months prior to 2000 and were not offset by holdings in
the derivatives market. These hedge fund portfolios would not necessarily create high
volatility, but Abreu and Brunnermeier (2003) and DeLong ef al. (1990b) show that well-
informed agents find it optimal to follow boundedly rational trading strategies to create
mispricing in the market.

Barber et al. (2009) show that the aggregate trading patterns of individual investors, who
are drawn to stocks with strong past returns and concentrate their trading in select stocks, do
influence asset prices. In their examination of large discount changes in closed-end funds,
Hughen and McDonald (2005) document that institutional investors can also cause prices to
deviate from intrinsic values. Thus during this time period, it is possible to conclude that
trading strategies enacted by hedge funds may have initiated additional trading patterns
from noise traders. Our findings of significantly higher mean reversion and volatility suggest
the market did witness an increase in uncertainty due to the presence of noise traders.

5.2 Options

The empirical evidence earlier suggests that noise is present in the equity market, which
causes equity prices to exhibit periods of stochastic volatility. A natural result from the
pricing relation in Eqn (11) shows that these random movements in volatility should influence
the futures option market. To understand the impact of noise traders on the options written
on index futures, we analyze the volatility structure of the options market. To do this, we back
out a Black—Scholes (BS)-implied volatility from each option price in the sample. Then, we
equally weight the implied volatilities of all call options in a given moneyness—maturity
category, to produce separate average implied volatility for the futures options.

Table 2 reports the average BS volatility values across five moneyness and three maturity
categories, for both the entire sample period and subperiods defined in Table 1. Regardless of
the estimation period or term to expiration, the BS-implied volatilities exhibit a strong smile
pattern as the options go from deep in the money to deep out of the money. As an example of
this relation, consider the implied volatilities for the nearby futures contract over the entire
sample from 1982 to 2003. The deep in-the-money call options, which have a moneyness less
than or equal to 0.97, have an average implied volatility estimate of 0.1667, and this is
significantly less than the average implied volatility estimate of 0.2041 for the deep out-of-the-
money options. Furthermore, the volatility smiles are strongest for short-term options. These
findings of moneyness-related and maturity-related biases associated with the BS model are
consistent with those in the existing literature, for example, Bakshi ef al. (1997); Bates (1996).

According to the aforementioned futures valuation model, the maturity-related biases
exhibited by BS-implied volatilities are not completely unanticipated. In particular, the
futures price volatility and therefore option volatility should decrease monotonically with
respect to the term to expiration. Under the stochastic structure of the equity market,
stochastic increments in the futures prices, Eqns (7) and (8), are exponentially dampened with
respect to maturity. Intuitively, noise trading leads asset prices to deviate from their
fundamental values, which after some point in time induces arbitrageurs to become more
active in the market. As a result, the impulse from random price movement due to noise
should diminish over time. For deep in the money, at the money and out of the money, implied
volatilities exhibit this behavior.

In addition to the term structure of volatility, structural shifts in the BS-implied volatilities
seem to exist. In particular, consistent with our empirical observation that greater levels of
noise existed during the technology bubble. In particular, implied volatilities across
moneyness and maturity categories are 41-56 % higher during the technology bubble period



Contract
Period Moneyness Nearby 2nd out 3rd out
1982-2003 095 <m <097 0.1667 0.1613 0.1624
097 <m <099 0.1691 0.1661 0.1678
099 <m <1.01 0.1786 0.1734 0.1727
101 <m <1.03 0.1911 0.1821 0.1793
1.03<m <1.05 0.2041 0.1915 0.1889
1988-2003 095 <m <097 0.1658 0.1613 0.1618
097 <m <099 0.1698 0.1685 0.1684
099 <m <1.01 0.1810 0.1774 0.1751
1.01 <m <1.03 0.1964 0.1875 0.1823
1.03<m <1.05 0.2139 0.1994 0.1922
1988-1996 095 <m <097 0.1395 0.1321 0.1353
097 <m <099 0.1400 0.1389 0.1418
099 <m <1.01 0.1497 0.1476 0.1489
1.01 <m <1.03 0.1649 0.1580 0.1576
1.03<m <1.05 0.1836 0.1682 0.1675
1996-2003 095 <m <097 0.2054 0.2062 0.2068
097 <m <099 0.2154 0.2145 0.2140
099 <m <1.01 0.2290 0.2239 0.2210
1.01 <m <1.03 0.2449 0.2330 0.2267
1.03 <m <1.05 0.2602 0.2423 0.2357

Note(s): This table provides the implied volatility estimates from the S&P 500 futures call options. For each
time frame, the futures options are segmented by moneyness (futures price/strike price) and maturity (contract
expiration)
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Implied volatility
estimates

relative to the pre-bubble period. Consider the category that includes at-the-money options
(moneyness between 0.99 and 1.01) for the nearby futures contract. These calls have an
average implied volatility of 0.2290 for the tech bubble period, and this result is 53% higher
than the implied volatility estimate of 0.1497 for the period from 1988 to 1996. Furthermore,
this volatility estimate is 28% higher than the corresponding estimate for the entire sample
period. The marked difference in volatility levels across these time periods seems to support
our findings that the equity market witnessed a structural change in trading during the
late 1990s.

5.3 Noise and implied volatility

To understand the volatility structure observed in the index futures options market, we
employ regression analysis to determine the association between noise present in the equity
market and the level of implied volatility in option prices. The simple regression specification
is:

IViji = aij + p;;Noise; + &, (14)

where IV;; , is the average implied volatility for moneyness and maturity category over the
sample (sub)period, and Noise,, as measured by the Kalman filter, represents the current level
of stochastic volatility that exists in the equity market. Eqn (14) tests the association of the
market’s expectation of future risk relative to contemporary deviations in the market.
Table 3 provides the estimated regression coefficients over our entire sample period for
options in five categories of moneyness. Panel A shows the results for the futures contract
with the closest expiration, and Panels B and C provide the results for the next two futures
contracts to expire. The regression coefficient for the noise variable (g;;) is negative and



Table 3.

Regressions of implied
volatility upon noise,
full sample period

Moneyness
0.95-0.97 0.97-0.99 0.99-1.01 1.01-1.03 1.03-1.05

Panel A: First futures contract out (nearby)
a; j (intercept) 0.1698 (0.0020)  0.1724 (0.0022)  0.1817 (0.0022)  0.1954 (0.0023)  0.2084 (0.0024)

S j (noise) —0.7457 (0.2119) —0.7953 (0.2284) —0.8103 (0.2331) —1.0424 (0.2471) —1.0203 (0.2456)
Adj R 0.0118 0.0113 0.0113 0.0175 0.0174
N 952 975 966 944 920

Panel B: Second futures contract out
a; j (intercept) 0.1651 (0.0020)  0.1693 (0.0020)  0.1769 (0.0020)  0.1862 (0.0022)  0.1940 (0.0023)

B (noise) —0.8749 (02018) —0.7643 (0.1985) —0.8271 (0.2088) —0.9893 (0.2400) —0.6735 (0.2385)
Adj R 00183 00145 00156 00178 0.0094
N 954 939 931 883 740

Panel C: Third futures contract out
a;; (intercept) 0.1658 (0.0022)  0.1702 (0.0021)  0.1763 (0.0022)  0.1830 (0.0024)  0.1939 (0.0028)

Si; (noise) —0.8942 (0.2809) —0.6315 (0.2608) —0.8678 (0.2575) —0.9081 (0.2882) —1.2213 (0.3691)
Adj R 0.0029 0.0062 0.0132 0.0134 0.0182
N 775 775 776 656 538

Note(s): This table provides the results from the regression IV, = a; ; + 8 j, Noise t + ¢;; ;, where 7 = contract
maturity, ; = moneyness and IV = average implied volatility. Observations with less than two days to
expiration, IV = 0 or moneyness <0.95 or >1.05 are deleted from the sample. Standard errors are shown in
parentheses

statistically significant at the 1% level for all models in the three panels. In other words, the
measure of noise derived from the Kalman filter is inversely related to the expected volatility
for the S&P 500 Index. This finding is robust to the moneyness of the option and expiration
date of the futures contract used in the analysis.

We next examine whether the relation between implied volatility and noise is stable in the
periods before and during the technology bubble. Table 4 provides the output from a
regression analysis over the pre-tech bubble period, which we define as from 1988 to 1996.
The estimated coefficients for the noise variable are of primary interest to our study, and our
analysis shows that noise is negative and statistically significant at the 1% level for all the
model specifications and Panels A, B and C. The coefficient estimates in Table 4 are larger in
absolute value terms than the estimates shown in Table 3. For example, Panel A of Table 4
shows that the noise coefficient for the at-the-money category of call options is —1.1083,
which is 37% larger than the corresponding estimate in Table III (—0.8103).

Table 5 provides the regression output for the period associated with the technology
bubble, which is from 1996 to 2003. The sign and significance of the regression coefficients for
noise are similar to the results for both of the full sample period and the pre-tech bubble
period. However, the magnitude of the coefficients estimated using the tech bubble period is
fundamentally larger than that of the coefficients from the other periods. Consider the
estimated coefficient for the noise variable of —3.9075, which is shown in Panel A of Table 5.
This coefficient has a magnitude that is 4.5 times the corresponding coefficient found in
Table 4 for the pre-tech bubble period. In a comparison of Tables 4 and 5, the coefficient
estimates for noise are on average 3.5 times larger in the models shown in Panel A and 2.5
times larger in the models shown in Panel B. In other words, the analysis supports a larger
negative relation between noise and implied volatility during the period commonly
associated with the technology bubble.

These results are consistent with prior research done on noise at the market
microstructure level. Li (2016) investigates the impact of liquidity on volatility using
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Moneyness
0.95-0.97 0.97-0.99 0.99-1.01 1.01-1.03 1.03-1.05 and stock

) market
Panel A: First futures contract out (nearby) bubbles
a;; (intercept) 0.1518 (0.0021) ~ 0.1519 (0.0022)  0.0159 (0.0022)  0.1709 (0.0022)  0.1832 (0.0021)
Jij (noise) —0.8766 (0.1956) —0.9915 (0.2038) —1.1083 (0.0240) —1.3296 (0.2067) —1.3296 (0.1974)
Adj R 0.0286 0.0326 0.0412 0.0590 0.0658
N 650 673 664 645 631
Panel B: Second futures contract out
a;j (intercept) 0.1455 (0.0020)  0.1484 (0.0017) ~ 0.1552 (0.0019)  0.1643 (0.0021)  0.1694 (0.0022)
J;; (noise) —1.0644 (0.1814) —1.0521 (0.1676) —1.1379(0.1733) —1.4400 (0.2058) —1.1646 (0.1992)
Adj R? 0.0482 0.0559 0.0614 0.0731 0.0632
N 661 650 645 609 493
Panel C: Third futures contract out
a;; (intercept) 0.1465 (0.0022)  0.1501 (0.0020)  0.1559 (0.0020)  0.1631 (0.0021)  0.1755 (0.0025)
f3;; (noise) —1.7022 (0.2564) —1.3834 (0.2222) —1.4590 (0.2138) —1.6311 (0.2424) —2.4967 (0.9619)
Adj R? 0.0758 0.0672 0.0788 0.0897 0.1434
N 526 525 534 450 370
Notes(s): This table provides the estimates from the following regression equation Table 4.

IVij+ = a;ij + p;; Noise; + €, where i = contract maturity, j = moneyness and IV = average implied Regressions of implied
volatility. Observations with less than two days to expiration, IV = 0 or moneyness <0.95 or >1.05 are deleted  volatility upon noise,
from the sample. Standard errors are shown in parentheses. pre-1996 period

NYSE stocks and index futures. His analysis isolates the noise component in liquidity trading
using trading volume and commissions. Similar to the results presented in our study, Li finds
that noise has a negative relation with both ex ante and ex post return volatility and this
negative relation is higher during market crises. Our study confirms these findings through a
different approach for quantifying noise trading through the index futures market.

Moneyness
0.95-0.97 0.97-0.99 0.99-1.01 1.01-1.03 1.03-1.05

Panel A: First futures contract out (nearby)
a;; (intercept) 0.2272 (0.0049)  0.2371 (0.0044)  0.2509 (0.0052)  0.2674 (0.0054)  0.2828 (0.0057)

Jij (noise) —3.9075 (0.7054) —3.9073 (0.7361) —3.9321 (0.7577) —4.0852 (0.7849) —4.0182 (0.8369)
Adj R? 0.0898 0.0828 0.0793 0.0805 0.0711
N 302 302 302 299 289

Panel B: Second futures contract out
a;j (intercept) 0.2234 (0.0043)  0.2303 (0.0045)  0.2409 (0.0046)  0.2486 (0.0047)  0.2584 (0.0050)

B (noise) ~30182 (06143) —2.7562 (0.6399) —29611 (0.6528) —2.7325 (0.6629) —2.7878 (0.7207)
Adj R 0.0734 00574 0.0642 00553 0.0537
N 293 289 286 274 247

Panel C: Third futures contract out

a;j (intercept) 0.2204 (0.0044)  0.2243 (0.0045)  0.2355 (0.0046)  0.2383 (0.0050)  0.2450 (0.0070)
Jij (noise) —2.3500 (0.6341) —1.7806 (0.6407) —2.4790 (0.6446) —1.9688 (0.6900) —1.4869 (0.9619)
Adj R 0.0488 0.0257 0.0541 0.0337 0.0083

N 249 250 242 206 168

Note(s): This table provides the estimates of the following regression equation:

IV;;: = a;j+ p;jNoise; + €;; , where i = contract maturity,/ = moneyness and IV = average implied volatility. Table 5.
Observations with less than two days to expiration, IV = 0 or moneyness <0.95 or >1.05 are deleted from the Regressions of implied
sample. Panel A displays the nearby contract, Panel B the second nearest term contract and Panel C the longest-  volatility upon noise,
term contract. Standard errors are shown in parentheses post-1996 period




Why would noise trading have a negative relation with volatility? An experimental study
by Bloomfield et al. (2009) to examine the behavior of noise traders in a laboratory market
offers insights into a potential explanation. They find that noise traders lower bid—ask
spreads and improve liquidity through increases in trading volume and market depth. Such
improved market conditions could have positive effects on market quality, and this impact
could be evidenced by lower implied volatility when noise traders are more active. Indeed, the
results in our study indicate that the level and characteristics of noise trading are
fundamentally different during the technology bubble, and this noise trading activity has a
larger impact during this period on implied volatility in the options market.

6. Conclusions

We estimate a two-factor jump diffusion noise model for futures contracts on the S&P 500 Index.
This model provides insight into key pricing parameters, especially implied volatility and noise.
Our study provides estimates for this model during the periods preceding and during the
technology bubble. Our analysis shows that the volatility and mean reversion in the noise level
are much stronger during the bubble period. Furthermore, the relation between noise trading
and implied volatility in the futures market was of a significantly larger magnitude during this
period. Our results support the importance of noise trading in market bubbles.

Notes
1. This solution is a stylized version of Hilliard and Reis (1998).

2. If the variance is zero, then the bubble is constant and the level of the bubble will equal its long-run
average. In our model, this value is equal to zero.

3. The Kalman filter technique is well treated in the control literature and the interested reader is
referred to Harvey (1989) or Hamilton (1991) for details.

4. During this period, the Nasdaq Composite Index increased by approximately 400%, and the
technology bubble peaked in March 2000 with the Index trading at a price/earnings ratio of almost
200. The subsequent bear market in technology stocks ended in 2003.

5. Merrick (1988) identifies mispricing in S&P 500 futures contracts, and he documents that these
contracts perform significantly better as hedges after 1985.

6. While the form of the stochastic differential is identical to the Hilliard and Reis (1998) model, the
assumed parameter values are different. Hilliard and Reis presume that the Bates’ (1991, 1996) model
is applicable and define their model accordingly. We simply use a no arbitrage constraint.
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Appendix 1

Derivation of pricing model (Equation #3)

In this section, we present a complete derivation of pricing model (3) from the paper.
Recall the following assumptions are maintained:

Al. There are no arbitrage opportunities.
A2: Trading takes place continuously.
A3: There are no transaction costs, taxes and short sales constraints.

A4: The dynamics of the commodity prices are given by the following stochastic differential
equation [6]
as(t)

0= (7 5+ 0(t) — A*u;)dt +o,dZ (1) +]"dq’, 1)

where 7 is the instantaneous riskless rate of return; & represents the dividend; b(f) represents the
presence of noise in the price of the market index; o represents the variance proportional to price
changes; dZ; (t) is the risk-adjusted increment of a standard Brownian motion process; ¢ is the
independent Poisson process; /* = ¥ — 1 is the risk-adjusted random percentage jump conditional
upon a Poisson distributed event occurring; /4; =E'[J"and Pr(dg" = 1) = 2"dt.

Ab5: The noise/bubble process follows the Ornstein—Uhlenbeck process

db(t) = —xb()dt + odZ, (£), )

where £ is the speed of adjustment factor; o, is the diffusion coefficient for the bubble process;
and dZ; (¢) is the risk-adjusted increment of a standard Brownian motion.
A6: The correlation between the Brownian motions is

Cov; [dZ (1), dZ;(1)] = pydt. ®

A7: The Brownian motions and the Poisson process are uncorrelated.



AB: The instantaneous rate of return and the dividend yield are constant.

Two-factor jump-diffusion futures valuation

Given the commodity spot price dynamic of expression (1), it is seen that the resulting sample path
will be continuous most of the time with finite jumps occurring. These jumps will arrive with different
signs and amplitudes at discrete points in time. If expression (1) conforms to some regularity conditions,
then the random variable ratio of the commodity price at time 7 to the commodity price at time ¢ can be
written formally. Let X(¢#) = InS(#). Applying Ito’s lemma to the transformation, the following
dynamics for X(f) may be written as

dX = X:dSu-o + %X [dSsp—0)” + XY — X

1 * ok *
=< ((r=6+0) - 2'w)Sdt + o.5aZ (1) _Z_y(,gszdtﬂnsy s

1 .. . yer SY
_5((7—5+b(t)—M,)SdtJrasSdZs (t)) —2—52055 dt+n <s>

@)
- ((7 — 5+ b(l) — /fﬂ})Sdt + asSdZ:(t)) - @G?Szdt + Y

- S
( 5+ b(t) — 2 y/)dt—l—ast (t) - %ade—lnY

= <1f — %af —5+0b(t) — /l*/,t]*)dt + 0,dZ; (t) +InY,

Integrating over the aforementioned expression from ¢ to 7 yields the following:
T

./TdX(v) :/<(7*%6< 5> i*ﬂ;)var/Tb(v)+US/TdZS*(v)+§:1n(yj),

X(T)—X(t)_/T<(r—%68— )—A,u])dzw—/b dv+ag/dZ 1))+Zln

X(T) = X(¢) + ((r—%of—&) —/fﬂ}’)(T—t)+/b(v)dv—kas/TdZ;(v)+Xn;1n(Y})
X(T) =InS(¢) + ((r—%a?— > —/1/4])1+/b dv—f—ab/dZ iln(Y,
=1

S(T) = S(t)exp{ ((7 —%zrf - 5) _fﬂ;>f+ /b(v)dv+asjd2:(v)}Y(n),

% ~ exp ((V _ %af _ 5) _ z*ﬂ;)f + / b)do + o / i7" (v) } Y (), 6)

t t
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Again, as stated in the paper text, where Y (n) = lifn =0; Y (n) = H;‘zl Y; for n> 1. Also recall, the Y;
are independently and identically distributed and # is Poisson distributed with parameter A"z, where
t=T-t

Appendix 2 Derivation of pricing model (Equation #5)

In this section, we present a complete derivation of pricing model (5) from the paper.

To determine the risk-neutral expected payout for an option, the posited dynamics of the underlying
security must be stated. In this case, this standard application is not a straightforward process. The
complication centers on the fact that the futures contract itself is a contingent claim, which precludes one
from simply stating the price dynamics exogenously. Instead, the stochastic differential for the futures
contract must be developed endogenously from the underlying system of state variables that impact the
value of the commodity contract. Henceforth, we detail the derivation of pricing model (5) from the text.

Consider the following, if the futures price is a function of the spot price, convenience yield and time,
namely F(SY, b, t), then using Ito’s lemma, we may express the futures price dynamic as

q

ar = %Fsstg _o + FsdSqq—0 + %bedb2 + Fydb + FydSdb + Fdt + F(SY, t) — F(S, ).
@

The right-hand side of the aforementioned equation can be rewritten by adding and subtracting
V'E*[F(SY, t) = F(S, t)]dt. This adjustment yields

dF = %FsstiFo + FydSqy—0 + %bedb2 + Fydb + FydSdb + F,dt + F(SY, t) — F(S, )

— VE'[F(SY, t) - F(S, t)|dt + ' E"[F(SY, t) — F(S, t)]dt,
¥

Substituting for the increments of the spot price and convenience yield and rearranging the
aforementioned yields

dF = %F%afszdt +F, [(r — 5+ 0(t) — /I*u;)Sdt + aSSde(t)} + %beoidt
+ Fy [—kb(8)dt + 6,d7; (1)] + Fupyooydt + Fidt + F(SY, 1) — F(S, 1) ©)
—X'E'[F(SY,t) = F(S,t)|dt + X'E*[F(SY ,t) — F(S,1)]dt
= %Fssgfszdt + %bedidt + F (7’ — 0+ b(t) — ,{VG‘)SdlL + Fb[—Kb(lL)dl‘] + FsbpstSO'bdt

+ Fdt + Z'E[F(SY, t) — F(S, H)|dt + F0,8dZ; (1) + Fyo,dZ; (t) + F(SY, 1)
—F(S, t)— "'E'[F(SY, t) — F(S, t)dt,

Which can in turn be restated as equation (5) from the text

1 1 .
_ {QFSSQ?SZ + P+ F, (r —5+b(t) - 2 ,4]) S — Fykb(t) + Fupyosop + F,

LA E[F(SY, t) — F(S, )] }a’t + F.0,SdZ; (1) + FyoydZ; (1) + F(SY, £) — F(S, 1)

—VE'[F(SY, t) - F(S, t)]dt.
©)
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